(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
h0(0) → 0
f0(0, 0) → 1
g0(0, 0) → 2
g1(0, 0) → 1
f1(0, 0) → 3
h1(3) → 2
g1(0, 0) → 4
h1(4) → 2
g2(0, 0) → 3
h1(3) → 1
h1(3) → 4
h1(4) → 1
h1(4) → 4
h1(3) → 3
h1(4) → 3
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, z1) → g(z0, z1)
g(h(z0), z1) → h(f(z0, z1))
g(h(z0), z1) → h(g(z0, z1))
Tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
S tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(z0, z1) → g(z0, z1)
g(h(z0), z1) → h(f(z0, z1))
g(h(z0), z1) → h(g(z0, z1))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
S tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1
POL(G(x1, x2)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(h(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
S tuples:
F(z0, z1) → c(G(z0, z1))
K tuples:
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F(z0, z1) → c(G(z0, z1))
G(h(z0), z1) → c1(F(z0, z1))
G(h(z0), z1) → c2(G(z0, z1))
Now S is empty
(10) BOUNDS(1, 1)